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Abstract-This paper presents an experimental and analytical study of non-isothermal liquid flow in 
sintered fiber metallic porous media. The purpose of the paper is to present a self-consistent procedure for 
determining heat-transfer characteristics of porous metals. The analysis uses the volume averaged 
conservation equations. Darcy’s law is assumed to hold and local thermal equilibrium is assumed to exist 
between the solid and liquid phases. The coupled conservation equations are solved for one and two 
dimensional temperature distributions using finite diiTerence schemes. Different flow and thermal 
boundary conditions are used. The experiments involve the measurement of temperature distributions 
and effective thermal conductivities of water saturated copper and nickel sintered fiber metal wicks. The 
effective thermal conductivities are measured using the steady-state method of comparison and the 
resulting values are used in the volume averaged energy equation. The measured temperature 
distributions and those predicted by the analysis show good agreement,, Thus the procedure presented in 

this paper for predicting heat transfer seems to be valid. 

NOMENCLATURE 

radius of cylinder [m] ; 
specific heat capacity [J/kg K] ; 
pore size [m] ; 
gravitational constant [9.80665 m/s’] ; 
permeability [cm21 ; 
characteristic length [m] ; 
axial distance [m] ; 
reference pressure [N/m21 ; 
fluid pressure [N/m21 ; 
Peclet number (p/Z,, cTL)j&,; 
dimensionless radial distance (r/a); 
radial dimension [m] ; 
Reynolds number (pr I/d/p) ; 
temperature [K] ; 
characteristic velocity [m/s] ; 
fluid velocity [m/s] ; 
fluid velocity [m/s] ; 
deviation velocity [m/s] ; 
dimensionless axial distance (z/L); 
axial dimension [ml. 

Greek symbols 

3 “, thermal conductivity [W/m K] ; 

Pt viscosity [kg/m s] ; 

1’3 average volume [m3]. 

Superscripts 

(1) The difficulty of analytically and experimen- 
tally determining the effective thermaf conductivity 
of porous materials fully and partially saturated with 
a fluid. 

(2) The question of what set of conservation 
equations best characterize non-isothermal flow in 
porous media and 

t averaged property ; (3) The lack of experimental data needed to verify 
deviation of value from average. a particular analytical model. 

Subscripts 

eff, effective property ; 
f . fluid property; 

These difficulties are interrelated. For example, the 
analytical model often determines the type of 
measurements that must be made; and the definition 
of the effective thermal conductivity, which is not a 
thermodynamic property, determines the nature of 
the conduction term in the energy conservatio~l 
equation. 

* Presently at Energy Development Associates, Madison 
Hts., MI 48071. U.S.A. 
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high value; 
low value ; 
reference property ; 
radial direction. 

INTRODUCTION 

AN UNDERSTANDING of heat transfer and non- 
isothermal flow in porous media is important for the 
design and analysis of devices in many branches of 
engineering. For example, metallic porous materials 
are commonly used in heat pipes and heat ex- 
changers; for transpiration cooling, filters, noise 
reduction and boundary-layer control. For successful 

design these applications require the calculation of 
the temperature distribution in porous materials 
with forced convection and a knowledge of the 
internal heat-transfer coefficient between the porous 
material and the fluid flowing through it. Apparentiy 
there is no widely accepted analytical procedure for 
these calculations and recourse has to be made to 
experiments. This is due to a number of factors: 



1050 B. S. SINGH and A. DYBBS 

The purpose of this paper is to provide a self- 
consistent procedure for the calculation of one and 
two dimensional temperature distributions in liquid 
saturated porous materials. The problem of de- 
termining the internal heat-transfer coefficient will be 

discussed in a later paper for both thermal and non- 
thermal equilibrium cases. In this paper, local 
thermal equilibrium in the porous medium will be 
assumed. Porous metals and water will be used for 
the experimental verification and the flow will be in 
the Darcy regime. 

Effective thermul conductivity 

For these studies the effective thermal conductivity 
of a fully saturated porous material is defined as the 
ratio of the total heat flux to the average tempera- 
ture gradient [I]. It is not a thermodynamic 
property and can depend on the geometrical ar- 
rangement of the constituent phases, the porosity, 
the thermal conductivities of the phases, and the 
thermal boundary conditions. While in principle it 
can be evaluated, in practice this is impractical 
because the porous medium structure is seldom 
known. This is particularly true of sintered metallic 
porous media whose structure is extremely complex 
and for which a characteristic length and hence a 
“unit cell” is very difficult to define. Thus in this 
work the effective thermal conductivity of liquid 
saturated porous metals was experimentally de- 
termined by using the steady state method of 
comparison. Details of the experimental process can 
be found in [2,3]. It should be noted that the 

effective thermal conductivity thus determined is for 
a stagnant liquid in a porous metal in the absence of 
radiation and convection. It is this effective thermal 
conductivity that is used in the conduction term of 
the energy equation presented below. 

ANALYTICAL MODEL-CONSERVATION 
EQUATIONS 

The phenomena of heat transfer and fluid flow in 

porous media can be described by applying the well 
known conservation equations of classical fluid 
mechanics--continuity, momentum, and energy to 
both the fluid and solid phases of the porous media 
(together with appropriate equations of state). This 
set of equations could be solved with appropriate 
boundary conditions (at the boundaries of the 
porous material) and interfacial conditions at the 
solid fluid interfaces (within the porous material). 
For porous media commonly encountered the solid 
fluid interfaces are very irregular and complex, and 
hence difficult to describe. Thus the solution of the 
problem is extremely difficult and at present appears 
to be intractable. 

To overcome this difficulty, a number of analytical 
approaches have been used. These can be classified 
as cell or phenomenological modelling, statistical, 
and volume averaging. Details of these approaches 
can be found in [4 61. Of these three the volume 
averaging approach appears to be the most approp- 

riate. It has a strong analytical basis, is sufficiently 
general, and lends easily to experimental verification. 
This approach will provide only a macroscopic 
picture of the phenomena and would normally 
require a knowledge of some properties of the 
porous media. 

In this paper the volume averaged conservation 

equations applicable for flow in the Darcy regime 
with local thermal equilibrium are investigated. This 
approach was independently developed by Dybbs 
[7], and Slattery [4]. The equations presented below 
are for a steady, incompressible low Reynolds 
number (Re cc 1) flow through a homogeneous and 
fully saturated porous media for the case of thermal 
equilibrium between the fluid and the solid phases. 
The equations presented here are adapted from 

Dybbs and Schweitzer [5]. 
The conservation of mass is described by 

V.V=O (1) 

where the overbars represent the volume averaged 
property defined as 

I 
V=- VdV 

1 I’ 
(2) 

r being the averaging volume. The conservation of 
momentum is described by 

v= -Qvp-pg) (3) 
/* 

which is a generalization of the empirical re- 
lationship proposed by Darcy [8]. The validity of 
Darcy’s law for isothermal flow has been verified by 
numerous authors, further details of their work can 
be found in Scheidegger [6]. 

The validity of Darcy’s law for non-isothermal 
flows has received little attention. Dybbs [7] and 
Dybbs and Schweitzer [5], based on their volume 
averaged conservation equations, have shown that 
Darcy’s law should be valid for low Reynolds 
number non-isothermal flow in porous media pro- 
vided that the property variations with temperature 
are properly taken into account. Schweitzer [9] has 
also proposed inclusion of an additional term in 
Darcy’s law to represent the effect of temperature 
gradient. Singh, Huang and Dybbs [lo] conducted 
experiments to study the validity of Darcy’s law for 
non-isothermal flow in sintered metallic porous 
media as well as packed beds. Their results sub- 
stantiate the conclusion of Dybbs [7] and Dybbs 
and Schweitzer [5]. Huang and Dybbs [I 11 using 
the principles of irreversible thermodynamics, de- 
monstrated that Darcy’s law should be valid for non- 
isothermal flow in porous media and the inclusion of 
any additional terms as proposed in [9] is not 
required. 

Darcy’s law is valid only for low Reynolds number 
flows. For Re 3 IO the inertia effects start to become 
important and Darcy’s law is no longer applicable. 
An inertia term is added to Darcy’s law in order to 
extend its range of validity. Details of this extended 
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Darcy law for isothermal flow can be found in where U, is the Darcy filter velocity and L, is a 
[I 2-151 and for non-isothermal flow in [ 161. characteristic length of the porous medium such as a 

The conservation of energy is described by radius for a cylindrically shaped material. 

p,~~‘,,[V.(P$)+V’(V’T’)] = I1,rrVZT (4) 

for details of its derivation see [S]. 
The experimental results of Dybbs and Schweitzer 

[17] have verified the applicability of a form of this 
equation for loosely packed beds. In addition Singh 
and Dybbs [ 1 S] have studied the validity of equation 
(4) for one dimensional flow and heat transfer in 
water saturated sintered metal cylinders. They 
measured the effective thermal conductivity and 
temperature distribution of the saturated porous 
medium ; their results indicate that: 

(a) For the flow rates considered (Re ,< IO) the 
effective thermal conductivity did not change with 
flow rate. _- 

In the present study the specimens used were 

cylindrical and the boundary conditions were azi- 
muthally symmetric. Equations (9) and (10) become 

(12) 
(13) 

where u, and u, are the axial and radial velocity 
respectively. 

Distilled water was used as the saturating fluid. 

The viscosity variation of distilled water with 
temperature can be approximated by using the 
Helmholtz relationship. 

(b) The contribution of the second term ps C,, 

V. (‘IV’) on the LHS of equation (4) is not 
imp~~rtant and the term can be dropped. 

In the paper of Singh and Dybbs [lg] the data for 
Tegraglas (sintered glass) showed some deviation 
from the analytical results but this was mainly due to 
heat losses from the test section which became 
significant for the low thermal conductivity material 
but were insignificant for the metallic specimens. 
This conclusion was further substantiated by ad- 
ditional experiments reported in [ 191. 

Hence the energy conservation equation used in 
this paper is 

-- 

p(T) = 1.779/(1.0+0.03368T+0.00022T2) 

(OC < T < 1OO’C) (14) 

where ,U is the viscosity in centipoise. 
Both one and two dimensional temperature distri- 

butions were studied. The boundary conditions for 

the cylindrical materials studied are discussed below 
and shown schematically in Fig. 1. 

prCp,V.(VT) = i.,,,v2?1. (5) 

Equations (1) and (3) are combined to obtain 

v~+vp.v/I] =o. (6) 

For most fluids the viscosity is a strong function of 
temperature. Thus 

p = p(T) (7) 
and 

fn) INSULATED SVtWACE (a) INSULATED SURFACE 

CO-CURRENT FLOW COUNTER CURRENT 

8. C. FLOW 8. C. 

V’p-;~[vjm] ==o. 

Thus equations (5) and (8) describe heat transfer 
and fluid flow in porous media with the previously 
mentioned assumptions. The equations are coupled 
by the variation of the viscosity with temperature. 

Equations (5) and (8) can be non-dimensionalized 
by an appropriate reference temperature ‘&, pressure 
P,, viscosity pK, characteristic length L, and charac- 
teristic velocity U,. The resulting equations are: 

v2p-~~[vp.v7.] =o 

and 

PeV.(VT) = V2T 

where the bars have been dropped and the 

Pe = (P/C,, U,&,)/&,, 

(LO) 

(11) 

CC) ISOTHERMAL SURFACE CD) HEAT PIPE 8. C. 

FIG. 1. Schematic diagram of the boundary conditions 
studied. 

(A) The end surfaces are kept at constant uniform 
temperature while the lateral surface is insulated. 
The fluid flows from the high temperature to the low 
temperature end. This is referred to as co-current 
flow boundary condition shown in Fig. I (A). At, 

;=O, T=T,, p=pn; -_=L, T=T,, p=pL 
. r=u, O<z<L, c?T/i%=O. (15) 

(B) Same as (A) but with the fluid flow in the 
direction of increasing temperature. Referred to as 
counter-current Bow boundary condition, shown in 
Fig. l(B). 

(C) The lateral surface kept at a constant tempera- 
ture. The fluid flow is opposed to the temperature 
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(A) TEST SECTION 

THFRMOCOIIPI F 

INLET / 
7= 

lOUTLET 
SECTION (1) SECTION ( 

HEATER (H) COOLER (C) 

TER OUT 

(B) HEAT EXCHANGER COPPER TUBES 

PLEXIGLAS PLATE 

&WATER IN 

FIG. 2. Schematic diagram of the test section and the heat exchanger 

-WATER TANK 

/SEALLESS GEAR PUMP 

1 TEST SECTION lJ 

[THERMO- _ DIGITREND 

COUPLES 
TEMP. 

RECORDER 

IJ &/VACUUM PUMP 
COLD TRAP 

Frc;. 3. Schematic diagram of the experimental set-up. 

gradient. This is referred to as the constant surface 
temperature boundary condition, shown in Fig. 1 (C). 

at Y = (I, 0 < z < L, T = T,, : 

-_ = 0, T = 7;,, p = p,,, 
z = L, T = TH, p = p,.. (16) 

(D) One part of the specimen lateral surface near 
one end was kept at a prescribed temperature 
whereas an equal length near the other end was kept 
at another temperature. The remaining lateral sur- 
face being insulated. This is shown in Fig. l(D) and 
referred to as heat pipe boundary condition 

at r = LI, 0 < z < I, T = T,, ; 

I’ = ~1, I < 2 < L-l, i?T,lZr = 0 

Y=LI, L-l<:< L, T= r,; 

2 = 0, T = T,,, p = pf, 

3 = L, T = 7;,, p = p!,; I < L/2. (17) 

EXPERIMENTAL A~~~AT~~ANDPROCEDURE 

The experimental program was divided into the 
following parts : 

(i) Determination of permeability which involved 
isothermal measurements of the pressure drop across 
the specimen and the fluid flow rate. 

(ii) Measurement of the effective thermal con- 
ductivity of the specimen fully saturated with 
stagnant fluid. 

(iii) Measurements of the temperature distri- 
bution, pressure drop and flow rate for the case of 
non-isothermal flow. 

An apparatus that would permit the performance 
of all the above mentioned tests on each specimen 
with a minimal of modification from one test to 
another was developed and used. 

This apparatus was similar to the one described in 
[ 1 X] and is shown for clarity schematically in Figs. 2 
and 3. Details may be found in [19]. The essential 
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SPECIMEN WRAPPED 
WITH TAPE 

THERMOCQUPL E 
OUTLETS AFAR 

BAGGERS 

FIG. 4. Sketch of the cylindrical porous specimen contained 
in the Plexiglas enclosure. 

difference between the apparatus used in [I183 and 

the one employed in the present study is the change 
in the specimen containment to allow maintenance 
of two dimensional thermal boundary conditions. 
The specimen wrapped with lead (or aluminum) tape 
and containing thermocouples was contained in a 
Piexiglas envelope as shown in Fig. 4. The envelope 
was made of three pieces of Plexiglas tube which 
were sealed together as well as to the specimen with 
RTV rubber cement. There was a gap of -0.3,9cm 
between the specimen surface and the Plexiglas tube 
containing it. The gap was divided into three 
compartments each covering one-third of the speci- 

men length. Water from Haake constant temperature 
baths could he circulated through each compartment 
to maintain it at a desired temperature. Thus the 
boundary conditions shown in Fig. 1 could be 
maintained on the specimen surface. 

The experimentnl results for two sintered metal 
materials are presented in this section, In particular a 
detailed comparison is made between the experimen- 
tal temperature distributions and those predicted by 
the analytical model. 

Sintercd specimens of copper and nickel 200 were 
tested under the boundary conditions shown in Fig. 
1. Water was used as the saturating tluid and all tests 
were conducted \rithin the Darcy regime. Some 
properties of the specimen and saturating fluid are 
given in Table I. 

The perme~~bility was measured under isoth~rm~~l 

conditions f - EC) znd the eil‘ective thermal con- 

0 .34 48 I3 0.79 
A 1.08 48 I8 2.30 

0.8 1.0 

FIG. 5. Experimental and analytical axial temperature 
profiles for the copper specimen (I: = 0.67) for the insulated 
surface co-current flow case, see Fig. I(A). The analytical 

profiles are the solid lines. 

NI ~‘0.65 

0 0.2 0.4 0.6 0.0 1.0 

Z>? 

FIG. 6. Experimental and analytical axial temperature 
distributions for the Nickel 200 specimen (e = 0.65) for the 
insulated surface counter current flow case, see Fig. I(R). 

The analytical profiles are the solid lines. 

Table 1. Test specimens and their properties 

Thermal 
conductivity of Mean Measured Temperature 

Specimen parent parent metal Measured pore size* Perme~biiity LCli range for 
metal or alloy tW’m C) porosity (cm) (Cd) (W:m C) i.,.,,. ( ‘C) 

Copper iX6 
Nickel X0 62 

*Data prowded by manufacturer. 

HMT Vol. 22. No. 7 -E 

0.67 0.01x 2.03*0.17x IO-* 37. I + 2.0 5-55 
0.65 0.018 6.03&0.4:! x lo-’ 15.45 T 1.34 5-55 
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NI 200 ~‘065 

AP (cmH20 ) 

o Fe = .57- 125 
0 Pe = 2 78 -.- 7.78 
A Pe =5.37 ----- 1700 

30’ I I I I ’ 30------J 
0 0.2 04 0.6 0.8 1.0 0 02 04 06 0.8 1.0 

A--+ R--- 

FIG. 7. Experimel~tal and analytical radial temperature profiles for the Nickel 200 specimen (c: = 0.65) for 
the isothermal boundary condition, see Fig. l(C). Two axial positions are shown 2 = 0.04 and Z = 0.08. 
The solid lines are the analytical profiles. Open symbols are measured data and filled symbols arc typical 

corrected data. The magnitude of the correction is indicated by curved arrow. 

NI 200 8 50.65 

AP (cmH20) 

0 Pe = .57 - I.25 

0 Pe =2.78 --- 7.78 
h Pe =5.37 ----- 17.00 

R--r R--- 

FIG. 8. Ex~rimental and analytical radial temperature profiles for the Nickel 200 specimen 0: = 0.65) for 
the isothermal boundary condition, see Fig. 1 (C). Two axial positions are shown Z = 0.13 and 2 = 0.17. 
The solid lines are the analytical profiles. Open symbols are measured data and filled symbols are typical 

corrected data. The magnitude of the correction is indicated by curved arrow. 

ductivity was measured using the apparatus dis- 

cussed ‘above with the steady state method of 

compakon as described in [I?, 3, $91. It is this 

effective thermal conductivity that is used in the 

analytical model. The reference velocity used in the 

Peclet number for the non-isothermal tests is 

(18) 

The coupled equations (12) and (13) are solved 
numerically subject to the appropriate boundary 

conditions by an explicit finite difference scheme 

using successive overrelaxation. A centraf difference 
scheme was used for the first order derivatives and a 
three point difference scheme was used for the second 
derivatives.Thegrid size was 8 (radial) by 48 (axial)and 
the accuracy of this scheme was of order (l/48)‘. This 
method was stable and in all cases converged within 150 
iterations. The one dimensional case reduces to two 
CoupIedord~narydifferentialequationswhereasthetwo 
dimensional case yields two coupled elliptic partial 
differential equations. The boundary conditions 
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Ni 200 c ~0.65 

AP(cmH20) 
0 Pe = .57 - 1.25 
0 PC =2.76 --- 7.76 
A PC = 5.37 --- - 17.00 

TH 

TL 

40’ I I 
0 0.2 0.4 0.6 0.6 1.0 

R--r 

TH 

401 
0 0.2 0.4 0.6 0.6 1.0 

Ad 

FIG. 9. Experimental and analytical temperature profiles for the Nickel 200 specimen (E = 0.65) for the 
isothermal boundary condition, see Fig. I(C). Two axial positions are shown Z = 0.33 and Z = 0.5. The 

solid lines are the analytical profiles. 

NI 200 E q 065 

AP(cmH20) 

0 Pe = .57 - I .25 
0 Pe =2.7% --- 7.70 
A Pe =5.37 ---- 17.00 

TH 

0 0.2 0.4 0.6 0.0 1.0 
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FIG. 10. Experimental and analytical radial temperature profiles for the Nickel 200 specimen (E = 0.65) 
for the isothermal boundary condition, see Fig. l(C). Two axial positions are shown Z = 0.67 and Z 

= 0.83. The solid lines are the analytical profiles. 

[equations (lS)-( 17)] are mixed, i.e. both Dirichlet and 

Neuman. Hence an analytical solution becomes 
impractical. The solutions give the pressure, velocity 
and temperature distributions. 

For the one dimensional cases, Fig. 1 (A) and 1 (B), 
the experimentally determined and analytically pre- 
dicted axial temperature distributions are shown in 
Figs. 5 and 6. Figure 5 shows the co-current flow 
case for the copper specimen and Fig. 6 shows the 
counter current flow case for the nickel 200 
specimen. The corresponding counter current flow 

case for the copper specimen and co-current flow 

case for the nickel 200 specimen show similar results. 
The solid lines are the numerical solutions and the 
data points are the experimental measurements. The 
agreement in all cases between the measured and 
predicted values is to within f 9%. 

Figures 7-10 show the comparison between the 
predicted and the measured temperature distri- 
butions for the nickel 200 specimen with the 
boundary conditions shown in Fig. l(C). The 
temperature distribution is two dimensional. In this 
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case the radial temperature profiles are plotted at 

different axial distances. In each figure the different 
curves correspond to different Peclet numbers. Once 
again the solid or dotted lines represent the 
numerical solution whereas the measured values are 
shown by data points. The results for the copper 
specimen are similar. The agreement in all cases 
between the measured and predicted values is within 

k 1 l”,,. In this case it should be pointed out that the 
thermocouples used to measure the temperature 
distribution in the specimen are radially inserted. 

Thus there is a temperature gradient along the 
thermocouples. This temperature gradient causes an 
error in the measured value because of conduction 
along the immersed portion of the thermocouple. An 
analysis of the error due to this effect is given by the 
authors in [20]. 

50 
r4 0 00 a Cu ~‘0.67 

o MEASURED SURFACE TEMP 

0 MEASURED CENTER TEMP 

- CENTER TEMP OBTAINED 

g:N”. ~F"'Co"U"P"L'E"d""E'N 

w 30- 
oz 
? 
2 25- 

f 

p 20- 

0 0.2 0.4 0.6 0.8 1.0 

FIG. I I. Experimental and analytical temperature distri- 
butions for the copper specimen (I: = 0.67) at r = 0 for the 

heat pipe boundary condition, see Fig. 1 (D). 

Because of this effect the indicated or measured 
temperatures are hiiher than the true temperatures. 
The difference is proportional to the temperature 
gradient along the thermocouple. The temperature 
gradients are significant only near the inlet end (z 
= 0) of the specimen. Thus the errors are also only 
significant there and only data points in Figs. 8 and 
9 had to be corrected. The open symbols in Figs. 
7-10 indicate measured temperatures and the filled 
symbols in Figs. 8 and 9 indicate typical corrected 
data. The curved arrows indicate the magnitude of 
the correction. 

Figure 11 shows a comparison of the measured 
and computed temperature profiles for the case of 
the copper specimen with the heat pipe boundary 
conditions, Fig. l(D). In this case the temperature 
distribution is also two dimensional and the agree- 
ment in all cases between the measured and 
predicted values is to within *4”,‘,. 

DISCUSSION AND CONCLUSIONS 

This paper presents an experimental and analyti- 
cal study of heat transfer and non-isothermal flow in 
sintered fiber metal wicks. Temperature distributions 
and pressure drops were measured in two metal 
wicks of copper (porosity, 0.67) and nickel 200 
(porosity, 0.65) with water as the saturating fluid. 
Various flow and thermal boundary conditions were 
applied as shown in Fig. 1. The measured tempera- 
ture distributions were compared to those predicted 
from the coupled momentum and energy volume 
averaged equations. This comparison showed that 
the agreement is very good, the maximum difference 
for all cases being + I I”,,. 

Thus the procedure presented in this paper for 
calculating the heat transfer of porous metals seems 
to be appropriate. The volume averaged con- 

servation equations, equations (8) and (9) can be 
used to predict temperature distributions of satu- 
rated liquid Rows in porous metals. These equations 
require the effective thermal conductivity of the 
saturated porous metal which was measured by the 
steady-state method of comparison. 
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ECOULEMENT DUN LIQUIDE NON-ISOTHERME ET TRANSFERT 
THERMIQUE DANS DES MILIEUX POREUX METALLIQUES FRITTES 

Resume&On presente une etude experimentale et thiorique de I’tcoulement d’un liquide non-isotherme 
dans un milieu poreux de fibres metalliques frittees. Le but est d’offrir une procedure pour determiner les 
caracteristiques de transfert thermique des metaux poreux. On utilise les equations de bilan basees sur les 
moyennes volumiques. On admet la loi de Darcy et on suppose que l’tquilihre thermique local existe 
entre le solide et le liquide. Les equations coupltes de bilan sont resolues pour des distributions de 
temperature a une et deux dimensions en utilisant la methode des differences finies. On considtre 
differentes conditions aux limites pour l’ecoulement et pour le probleme thermique. Les experiences 
concernant la mesure des distributions de temperature et des conductivites thermique efficaces pour I’eau 
saturant des masses poreuses frittees de fihres de cuivre et de nikel. Les conductivites thermiques sont 
mesurees en utilisant la mtthode de comparaison en regime permanent et les valeurs obtenues sont 
utilisees dans I’tquation d’tnergie. Les distributions mesurees de la temperature sont en accord avec celles 

calcultes. Ainsi la procedure presentee, pour prevoir le transfert thermique, semhle valide. 

NICHT-ISOTHERME FLUSSIGKEITSSTROMUNG UND WARMEUBERTRAGUNG IN 
GESINTERTEN, METALLISCH POROSEN MEDIEN 

Zusammenfassung-Mit dieser Arbeit werden eine experimentelle und eine analytische Untersuchung 
uber die nichtisotherme Fliissigkeitsstromung in pordsen, metallischen Medien aus gesinterten Fasern 
vorgelegt. Das Ziel der Arheit ist, ein geschlossenes Verfahren zur Bestimmung der Warmeubertragung- 
seigenschaften von porosen Metallen vorzulegen. Bei der Analyse werden die Erhaltungssatze auf tiber 
das Volumen gemittelte GrGBen angewendet. Es wird angenommen, da0 das Gesetz von Darcy gdltig ist 
und da13 rwischen der festen und Riissigen Phase drtlich thermisches Gleichgewicht besteht. Die 
gekoppelten, aus den Erhaltungssatzen resultierenden Gleichungen wurden mit Hilfe finiter Differenzen- 
verfahren fiir ein- und zweidimensionale Temperaturverteilungen gel&t. Es wurden verschiedene 
Stromungs- und thermische Randbedingungen angenommen. Die Experimente umfassen die Messung 
von Temperaturverteilungen und effektiven Warmeleitfahigkeiten von mit Wasser gesdttigten Metal- 
ldochten aus gesinterten Kupfer- und Nickelfasern. Die effektiven Warmeleitfrihigkeiten wurden nach der 
stationiren Vergleichsmethode gemessen und die erhaltenen Werte in der tiber das Volumen gemittelten 
Energiegleichung verwendet. Die gemessenen und die analytisch berechneten Temperaturverteilungen 
zeigen gute Ubereinstimmung. Somit scheint das in dieser Arbeit angegebene Verfahren zur Berechnung 

der W>irmetibertragung gdltig zu sein. 

HEA30TEPMMYECKOE TEYEHME )KHAKOCTM M IIEPEHOC TEIIJIA 
B METAJIJIOKEPAMA’IECKWX IIOPBCTbIX CPEAAX 

AHHOTB~IU- B CTaTbe IIpeLlCTaBneHbI pe3ynbTaTbI 3KCIlepHMeHTiUIbHOrO B TeO~TWJeCKOrO &iCCnenO- 

BaHUIl HfXi3OTepMH’bXKOI-0 TeYeHHll XGi,ZlKOCTH B arnOMepHpOBaHHbIXMeTannOBOnOKHNCTbIXIIOpHCTbIX 

cpenax. kiccnenoeawin npoeeneHbI c uenbm nonyyemin HaneErroii MeTomm onpenenefim xapar- 

TepucTm nepeHoca Tenna B nopacTbIx MeTannax. flna aHami3a 5icnonb30Bamicb ycpenHeHHbIe no 

06ti~y ypamiemin coxpartemin. Cnenarro npennononemie 0 cnpaeennaBocTu 3aKoHa Aapca H 0 

nOKanbHOM TepMH'ieCKOM paBHOBeCHFf MelKay TBepnOti B XGiDKOfi aa3aMH. CBR3aHHbIe ypaBHeHHK 

coxpaaesmi peuIanecb ma cnyqaeB onHoMepHor0 w nByxMepHor0 pacnpeneneHui7 TeMnepaTypbI c 

HCIIOnb30BaHHeM KOHeYHO-pa3HOCTHbIX CXeM U pa3nH9HbIX Q?aHWiHbIX yCnOBHti. 3KCnep,,MeHTanbHO 

H3MepnnHcb 3HaSeHwI pacnpeneneH&i TeMnepTyp H +$eKTWBHOfi TennonpoBonHocTti MeaHbIX u 

HHKeneBbIX MeTannOBOnOKHNCTbIX &WJIe~, HaCbIlUeHHbIX BOL,Ofi. npH H3MepeHiiH +$eKTE,BHOfi 

TeIInOnpOBOnHOCTH IIpHMeHXnCK CTaUHOHapHbIfi MeTOn CpaBHeHHK, a nonyvembte pe3ynbTaTbI 

mnonb30BanHcb B 0cpenHemioM no 061&y ypaBHeHm 3Heprmi. OTMeqeHo xopoluee coBnanemie 

3KCIIepHMeHTanbHbIX H TeOpeTWieCKHX 3Ha'IeHHii pZlCIIptT)W’ZHHI? TeMnepaTypbI. TaKHM 06pa3OM, 

npeQno~eHHaa BCTaTbe MeronHKa Moxcer 6bITb ~cnonb3oBaHa Qnn pamETa npouecca nepemca Tenna. 


